tdefine ciplus % "+O" % ndefine ciplus % O+ % tdefine citimes % "Γ—O"
     % ndefine citimes % Ox % tdefine =wig % "=HH" % ndefine =wig % ="~" %
     tdefine bigstar % "+Χ" % ndefine bigstar % X-| % tdefine =dot %  "=."
     % ndefine =dot % = dot % tdefine orsign % "\\//" % ndefine orsign %
     \/ % tdefine andsign % "//\\" % ndefine andsign % /\ % tdefine =del
     %  "=”" % ndefine =del % = to DELTA % tdefine oppA % "\\/"----/ % ndefine
     oppA % V- % tdefine oppE %"---|"| % ndefine oppE % E/ % tdefine incl  %
     "or---"  % ndefine incl % C_ % tdefine nomem % "/" % ndefine nomem % C/-
     % tdefine angstrom % "A°" % ndefine angstrom % A to  o  %  tdefine
     star  %{ roman "*"}% ndefine star % * % tdefine || % oror % tdefine
     <wig % "<H" % ndefine <wig %{ < from "~" }% tdefine >wig %  ">H"  %
     ndefine  >wig  %{  >  from  "~" }% tdefine langle % "/
                                                          \" % ndefine
     langle %<% tdefine rangle % "\
                                  /" % ndefine rangle %>% tdefine hbar
     %  "h_" % ndefine hbar % h- % ndefine ppd % _| % tdefine ppd % "_or" %
     tdefine <-> % "←’" % ndefine <-> % "<-->" % tdefine <=> %  "<==>"  %
     ndefine <=> % "<=>" % tdefine |< % "<or" % ndefine |< % <| % tdefine
     |> % ">or" % ndefine |> % |> % tdefine ang % "/_" % ndefine ang % /_ %
     tdefine  rang  %  "or_"  %  ndefine rang % L % tdefine 3dot % "..." %
     ndefine 3dot % ...
                      % tdefine thf % "..."  %  ndefine  thf  %  ...  %
     tdefine  quarter  %  roman  ΒΌ  %  ndefine quarter % 1/4 % tdefine
     3quarter % roman ΒΎ % ndefine 3quarter % 3/4 % tdefine degree %  Β°
     %  ndefine  degree % nothing sup o % tdefine square %  % ndefine
     square % [] % tdefine circle % O % ndefine circle % O  %  tdefine
     blot  %  ""  %  ndefine  blot % HXI % tdefine bullet %  % ndefine
     bullet % oex % tdefine -wig % "≃" % ndefine  -wig  %  -  to  "~"  %
     tdefine  wig % β‰ˆ % ndefine wig % "~" % tdefine prop %  % ndefine
     prop % oc % tdefine empty %  %  ndefine  empty  %  O/  %  tdefine
     member %  % ndefine member % C- % tdefine cup % βˆͺ % ndefine cup %
     U % define cap % ∩ % define subset % βŠ‚ %  define  supset  %  βŠƒ  %
     define !subset % βŠ† % define !supset % βŠ‡ %

     EQNCHAR(7)                                             EQNCHAR(7)

     NAME
          eqnchar - special character definitions for eqn

     SYNOPSIS
          eqn /usr/pub/eqnchar [ files ] | troff [ options ]

          neqn /usr/pub/eqnchar [ files ] | nroff [ options ]

     DESCRIPTION
          Eqnchar contains troff and nroff character definitions for
          constructing characters that are not available on the
          Graphic Systems typesetter.  These definitions are primarily
          intended for use with eqn and neqn. It contains definitions
          for the following characters

          "ciplus"  ciplus      "||"      ||         "square"  square
          "citimes" citimes     "langle"  langle     "circle"  circle
          "wig"     wig         "rangle"  rangle     "blot"    blot
          "-wig"    -wig        "hbar"    hbar       "bullet"  bullet
          ">wig"    >wig        "ppd"     ppd        "prop"    prop
          "<wig"    <wig        "<->"     <->        "empty"   empty
          "=wig"    =wig        "<=>"     <=>        "member"  member
          "star"    star        "|<"      |<         "nomem"   nomem
          "bigstar" bigstar     "|>"      |>         "cup"     cup
          "=dot"    =dot        "ang"     ang        "cap"     cap
          "orsign"  orsign      "rang"    rang       "incl"    incl
          "andsign" andsign     "3dot"    3dot       "subset"  subset
          "=del"    =del        "thf"     thf        "supset"  supset
          "oppA"    oppA        "quarter" quarter    "!subset" !subset
          "oppE"    oppE        "3quarter"           3quarter  "!supset"!supset
          "angstrom"            angstrom  "degree"   degree

     FILES
          /usr/pub/eqnchar

     SEE ALSO
          troff(1), eqn(1)